

Django | Python for Web Development

Contents

Introduction
What Is a Web Framework?
Meet Django
What is Django Used For?

Chapter 1 - Installing to Get Started
Introducing the Command Line
Shell Commands

Virtual Environments
Installing Django
Setup your Virtual Environment for Django on MacOs/Linux

Installing Pipenv Globally
Your First Blank Django Project
Introducing Text Editors

Setting Up Django on VS Code
Lastly, Git

Chapter 2 - Create Your First Django Project
Setup
HTTP Request/Response Cycle
Model-View-Controller (MVC) and Model-View-Template (MVT)
Creating A Blank App
Designing Pages
Using Git

Chapter 3 - Django App With Pages
Setup
Adding Templates
Class and Views
Our URLs
About Page
Extending Templates
Testing
Website Production

Heroku
Let’s Deploy

Chapter 4 - Create Your First Database-Driven App And Use The Django
Admin

Initial Setup
Let’s Create a Database Model
Activate the models
Django Admin
Views/Templates/URLs
Let’s Add New Posts
Tests
Storing to GitHub
Setup Heroku
Deploy to Heroku

Chapter 5 – Blog App
Initial Set Up
Database Models
Admin Access
URLs
Views
Templates
Add some Style!
Individual Blog Pages
Testing
Git

Chapter 6 – Django Web Forms
CreateView
Let Anyone Edit The Blog
Let Users Delete Posts
Testing Program

Chapter 7- User Accounts

User Login Access
Calling the User’s Name in The HomePage
User Log Out Access
Allow Users to Sign Up

Link to Sign Up
GitHub
Static Files
Time for Heroku
Deploy to Heroku
PostgreSQL vs SQLite

Conclusion
Follow-Up Actions
Third-party bundles

INTRODUCTION
Welcome to the future. Reading this Django book is the best decision you
will ever make this year. Python programming is taking over the world. The
world of the web is more than impressive. You are here because you are
interested in website development.

Django is exciting if you are interested in building websites. Django is a
framework for making websites. It saves you a lot of time and makes
building websites easier and more fun. Django makes it easy to build and
maintain high-quality web applications.

Web development is a creative journey, fun-filled and full of adventure,
with enough stress to last a day! Django lets you focus on your web
application's fun and critical parts while making the boring parts easier. In
other words, it makes it easier to create common programming tasks and
abstract common web development patterns. It also gives clear rules for
how to solve problems. It does all these things and allows you to work
outside the framework's scope when needed. My goal with this book is to
help you learn and master Django. I want you to go as far as you possibly
want to go in and understand the Django web framework.

This book's structure will help you remain engaged until the very end
because I picked it from the beginning. We're going to start with absolute
basics. And then we're going to work our way up, introducing new concepts
along the way.

And I'm not going to be building a whole project. So instead, I'm going to
just jump into individual concepts and put them into a practical use case in
a sort of project. And then, eventually, you'll have an excellent
understanding of how to build real web applications using Django.

Of course, I recommend that you learn from entire projects, and there are
many online. However, this book is all about getting the absolute basics to
even advanced level things, bit by bit.

If you're learning Django for the first time, it's a fascinating experience, at
least it was for me because once I was able to build a web application with
a database attached to it, I felt like a demi-god!

Now, I think that you might be just as excited. And perhaps you've already
done that with other web applications. Or maybe this is the first time you're
programming. Either way, the most frustrating part is at the beginning. Not
so much because of the programming language, but often because of how to
set up your system. And since it's so frustrating, over the years, we have
refined the way to set up your system, depending on what you're operating
on. And that's part of the frustration is like, you're going to see me working
a lot in a Windows OS environment. And if you're on macOS, you may
look at the screenshots I share in this book and feel like, hey, why isn't it the
same?

I mean, using Python and Django are the same on both systems. Because
Python is Python, and Django is Django. The commands to get there might
differ slightly, but it's the same realistically.

I will walk you through all the processes in this tutorial, step by step, and
you will find it very easy. I will explain how to set it up on Windows and
macOS.

And then the last thing is when in doubt, consult the documentation.
Django's documentation is very well written. And there's just so much that

you can learn that we won't necessarily cover because they give additional
context or specifics to whatever use case you have for the technology. And
then the last thing is Google is your friend. You can use Google to search
for something that you're not familiar with. The best of us use Google a lot.

And often, that will bring up stack overflow.com. Stack Overflow has all of
these questions from people for all sorts of programming languages,
including Python, Django, JavaScript, and all kinds of things.

So, a brief intro into some concepts before we dive right in.

What Is a Web Framework?
Before we talk about Django, we need to talk about web frameworks, which
are very important in modern web apps. Let's look at how a Python
application is coded when you don't use a framework to learn about web
frameworks. A Common Gateway Interface is the best way to do this
(CGI). You just need to make a script that outputs HTML and save it to a
web server with a.cgi extension. Writing from scratch is probably the best
way to go for simple pages. There is no other code to read, and the code is
easier to understand. It's also easier to set up.

Even though the approach is simple, it has a few problems. What would you
do, for example, if you needed more than one part of your app to connect to
a database? Using the above method, you would have to put the code for
connecting to the database into each CGI script twice. This can be hard to
do, making it more likely that someone will make a mistake. Putting this
code in a shared function would be easier, though. When the same code is
used in different environments, each with its own password and database, it
will need to be set up for each virtual environment.

Also, if you haven't used Python much, you're more likely to make small
mistakes that can cause the program to crash. The page's logic and HTML
display elements should be kept separate, so the editor can change one
without changing the other.

A web framework solves these problems by giving programmers a place to
start building applications. This lets you focus on writing code that is easier

to understand and keep up to date. Django does this as well.

Meet Django
Django is a high-level Python web framework that facilitates quick
development and clean, practical design. It was made by experienced
developers and takes care of a lot of the trouble of web development, so you
can focus on writing your app instead of starting from scratch. It's free, and
anyone can use it. Django is a free and open-source Python-based web
application framework for building the back end of websites and web apps.

It uses the architectural pattern called Model View Template (MVT). It
divides the code into the Model, the View, and the Templates. The
developers only have to write the code for what should be shown to the
user. Django will take care of everything else.

The main goal of Django, which the Django Software Foundation runs, is to
make it easier to create complex, database-driven websites.

Some of the biggest companies in the world, like Google, YouTube, NASA,
and Instagram, use Django for web development. This is primarily because
of its robust and practical design, with features like ORM, Django's
template language, scalability, flexibility, the Django admin panel, and
Python's ease of use.

What is Django Used For?
Django's ORM layer is powerful. It speeds up development by streamlining
data and database management. Without ORM, web developers would have
to form tabular displays and explain operations or queries, which can result
in a large amount of SQL that is difficult to track.

Its models are all in one file, unlike other web frameworks. In larger
projects, models.py may be slow.

Django supports multiple databases.

SQLite can be used for development and testing without additional
software.

Production databases are PostgreSQL or MYSQL.

For a NoSQL database, use MongoDB with Django.

In this book, you will walk with me as we create really awesome web
development projects, CRUD (wiki style) blogs, and so on. The best way to
learn is by doing. So, follow along on your computer as you read the steps
and keep up with me. You don’t have to cram every step. You will always
have this book as a reference. Follow me.

CHAPTER 1 - INSTALLING TO GET STARTED
Alright, so in this one, we will create a new virtual environment and install
Django. Django is essentially a Python code. That means Python must be
installed before installing Django.

This chapter explains how to configure Windows or macOS for Django
projects. Developers use the Command Line to install and configure Django
projects.

This chapter shows you how to set up your Windows or macOS computer
correctly so you can work on Django projects. We start by giving an
overview of the Command Line, powerful text-only interface developers
use to install and set up Django projects. Then we install the most recent
version of Python, learn how to set up virtual environments that are only
used for one thing, and install Django. As the last step, we'll look at how to
use Git for version control and a text editor. By the end of this chapter, you
will have set up a Django project from scratch.

Introducing the Command Line
The command line is that blank screen you see in hacker movies where they
type matrices. It is how coders and software developers interact with the
computer while most people use a mouse or finger. We use it to run
programs, install software, and connect to cloud servers. Most developers
find that the command line is a faster and more powerful way to move
around and control a computer after a bit of practice.

The command line is scary for people who have never used it because it
only has a blank screen and a blinking cursor. After a command has run,
you often don't get any feedback. You can wipe an entire computer with a
single command without a warning if you're not careful. Because of this,
the command line should only be used with care. Make sure not to just copy
and paste commands you find online. If you don't fully understand a
command, only use trusted sources.

In real life, the command line is also called the console, terminal, shell,
prompt, or Command Line Interface (CLI). Technically, the terminal is the
program that opens a new window to access the command line.

A console is a text-based application; a shell is a program that runs
commands on the underlying operating system; a prompt is where you type
commands and run.

Are there terms confusing? Haha. They all mean the same thing: the
command line is where we run and execute text-only commands on our
computer.

PowerShell is the name of both the built-in terminal and shell on Windows.
To get to it, press the Windows button and type "PowerShell" to open the
app. After the > prompt, it will open a new window with a dark blue
background and a blinking cursor. On my computer, it looks like this.

Before the prompt is PS, which stands for PowerShell. Then comes the
Windows operating system's initial C directory, followed by the Users
directory and the current user, SYSTEM32, on my computer. Your
username will be different, of course. Don't worry about what's to the left of
the > prompt right now. It will be different on each computer and can be
changed later. From now on, Windows will use the shorter prompt >.

The built-in terminal on macOS is called Terminal, as it should be. You can
open it with Spotlight by pressing the Command key and the space bar at
the same time, then typing "terminal." You can also open a new Finder
window, go to the Applications directory, scroll down to the Utilities folder,

and double-click the Terminal application. After the "%" prompt, it opens a
new screen with a white background and a blinking cursor. Don't worry
about what comes after the percent sign. It's different for each computer and
can be changed in the future.

If your macOS prompt is $ instead of %, then Bash is used as the shell. The
default shell for macOS changed from Bash to zsh in 2019. Most of the
commands in this book can be used with either Bash or zsh. If your
computer still uses Bash, you should look online to learn how to switch to
zsh through System Preferences.

Shell Commands
There are a lot of shell commands, but most developers use the same few
over and over and look up more complicated ones when they need them.

Most of the time, the commands for macOS and Windows (PowerShell) are
the same. On Windows, the whoami command shows the computer name
and user name. On macOS, it only shows the user name. Type the command
and press the return key as with any other shell command.

But sometimes, the shell commands on Windows and macOS are very
different from each other. One good example is the primary "Hello, World!"
command. " message to the terminal. On Windows, the command is called
Write-Host, and on macOS, it is called echo.

Using the computer's filesystem is a task that is often done at the command
line. The default shell should show the current location on Windows, but
Get-Location can also be used to do this. Use pwd on Mac OS (print
working directory).

You can save your Django code wherever you want, but for ease of use,
we'll put ours in the desktop directory. Both systems can use the command
cd followed by the location you want to go to.

cd OneDrive\Desktop
OR

% cd desktop
On macOS

You can use the command mkdir to create a new folder. We want to create a
folder called script on the Desktop. We will keep another folder inside it
called ch1-setup. Now here is the command line to do all of these:

> mkdir code
> cd code
> mkdir ch1-setup
> cd ch1-setup

Press enter after each line, and you will get something like this:

I love to believe that you have installed Python on your computer. If you
haven’t, please head on to Python’s official website and install Python. You
will find the latest version of Python on the official website. After installing
Python, you have to set up your system for Django.

To verify that you have Python installed on your Windows or Mac system,
open your command prompt and type in the following code:

Python --version

Once you press Enter, the version of Python you have installed on your
computer will show. If it doesn’t, go ahead and install Python.

Once you have verified the installation of Python, you can now install
Django.

Virtual Environments
Django's purpose is now clear to you. One of the most common issues with
Django is that a project built in one version may not be compatible with one
created in another. You may run into issues if you upgrade from a version of
Django 1.5x to Django 1.6x.

Installing the latest versions of Python and Django is the right way to start a
new project. Let’s say you created a project last year and used older
versions of Python and Django. Now, this year you want to use Django 4.0.
You may have to reinstall the version you used in creating that project at the
time to open it.

Python and Django are installed globally on a computer by default, making
it a pain to install and reinstall different versions whenever you want to
switch between projects.

This problem can be easily solved if you use Django's version across all
your projects. That is why creating a virtual environment with its own set of
installation folders is essential.

You can easily create and manage separate settings for each Python project
on the same computer using virtual environments. Otherwise, any changes
you make to one website in Django will affect all the others.

There are many ways to set up virtual environments, but the easiest is to use
the venv module, which comes with Python 3 as part of the standard library.
To try it out, go to the ch1-setup directory that is already on your Desktop.

cd onedrive\desktop\code\ch1-setup

Use the following command line to create a virtual environment

python -m venv <name of env>

on Windows or

python3 -m venv <name of env>

on macOS

It is up to the developer to choose a good name for the environment, but
.venv is a common choice.

After that, if you are on Windows, type in the following:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

After creating a virtual environment, we need to turn it on. For scripts to
run on Windows, we must set an Execution Policy for safety reasons. The
Python documentation says that scripts should only be run by the
CurrentUser, and that is what that second line does. On macOS, scripts are
not limited in the same way, so you can run source.venv/bin/activate
immediately.

.venv\Scripts\Activate.ps1

For Mac users:

source.venv/bin/activate

As you can see in that screenshot, the environment name (.venv) is now
added to the shell prompt. That shows that the virtual environment is

activated. Any Python packages that are installed or updated in this location
will only work in the active virtual environment.

Now we can install Django.

Installing Django
Now, with the virtual environment active, we can install Django with this
simple command line:

py -m pip install Django

That line will download and install the latest Django release.

Please consult the Django official website here if you have any issues
installing Django.

Setup your Virtual Environment for Django on
macOS/Linux
Now, I want you to have a new virtual environment and a fresh Django
install, not only just to get the practice of it but also to make sure that we're
all starting from the exact same spot. So if you open up your terminal
window, or if you're on Windows, your PowerShell, or command prompt.

So if we type out Python -V in the Terminal, you will get the version of
Python you have on your Mac or Linux computer. If you don’t have Python
3 installed, go to the official Python website to get it on your MacOs.

Now, we need the Virtual Environment. Introducing…

Installing Pipenv Globally
Now the first thing you need to get your installation of Django to work on
all projects is to install a virtual environment. The best way to do this on
Mac is by installing pipenv.

First, open Terminal and upgrade pip with the following command line:


```

python3 -m pip install pip --upgrade

```

This will upgrade whatever pip version is in your system. After this, you
can install pipenv to use Django:

```

python3.8 -m pip install pipenv

```

This will essentially install the virtual environment. You can verify it by
using the following line:

Now, you can install Django with a single line:

$ python -m pip install Django

Your First Blank Django Project
The way to create a blank website on Django is to first get the name of the
site and then type in the following command:

django-admin startproject mysite .

Where mysite is the name of your project. You can use almost any name,
but we will use mydjango in this book. This is what the command line loos
like:

(.venv) PS C:\Users\Jde\OneDrive\Desktop\script\ch1-setup> django-admin
startproject mydjango .

Now, let's ensure everything is working by running the runserver command
to run Django's internal web server. This is good for developing locally, but
when it's time to put our projects online, we'll switch to a more robust
WSGI server like Gunicorn.

Type in the following command:

python manage.py runserver

If you do this, you have successfully created a website. Check now by
opening your web browser and typing the following in the URL
http://127.0.0.1:8000/.

You should see the following:

Well done! You have successfully created your first Django project on a
local server. Stop the local server by typing the correct command. Then,
leave the virtual environment by pressing "deactivate" and pressing Enter.

See you in the next chapter, where we will create a website with some
words.

This book will give us a lot of practice with virtual environments, so don't
worry if it seems complicated right now. Every new Django project follows
the same basic steps: make and turn on a virtual environment, install
Django, and run startproject.

It's important to remember that a command line tab can only have one
virtual environment open at a time. In later chapters, we'll make a new
virtual environment for each new project, so when you start a new project,
make sure your current virtual environment is turned off or open a new tab.

Introducing Text Editors
You have met command lines. That is where we run commands for our
programs, but expert developers write code in a text editor. There are many
different text editors you can use. The computer doesn't care what text
editor you use because the end result is just code, but a good text editor can
give you helpful tips and catch typos for you.

There are many modern text editors, but Visual Studio Code is very popular
because it is free, easy to install, and used by many people. If you don't
already have a text editor, you can get VSCode from the website and install
it.

Setting Up Django on VS Code
We will set up our Django project on VS Code or Visual Studio Code. If
you don’t have that app, go to code.visualstudio.com and download the
version for your machine. It is free and cross-platform. It also has a vast
community of people or developers that build all sorts of great things for it.

Note that this is not the same as Visual Studio. Visual Studio is a different
kind of text editor. There are other types of text editors like Sublime Text
and Pycharm, but Visual Studio Code or VS Code is my favorite.

Open up VS code, and we will start our new project. So you're going to see
a welcome screen. You will need to install a couple of extensions in
VSCode.

Go to the Extensions tab. Search Python and install the first result with the
highest number of downloads. After that, you need to install Black. To do
this, go to Terminal, and click on New Terminal. From there, type in the
following command:

python -m pip install black

Next, go to File > Preferences > Settings on Windows or Code >
Preferences > Settings on macOS to open the VSCode settings. Look for
"python formatting provider" and then choose "black" from the list. Then
look for "format on save" and make sure "Editor: Format on Save" is turned
on. Every time you save a .py file, Black will now format your code for
you.

Go to the Explorer tab to confirm that Black and Python are working. Find
Desktop, and open your ch1-setup folder. Create a new file and name it
hello.py. On the new page, type in the following using single quotes:

print('Hello, World!')

Press CTRL + S to save and see if the single quotes change to double. If it
changes, that is Black working.

Lastly, Git

The last step is to install Git, which is a version control system that modern
software development can't do without. Git lets you work with other
developers, keep track of all your work through "commits," and go back to
any version of your code, even if you accidentally delete something
important.

On Windows, go to https://git-scm.com/, which is the official site, and click
on "Download." This should install the correct version for your computer.
Save the file, then go to your Downloads folder and double-click on the file.
This will start the installer for Git on Windows. Click "Next" through most
of the early defaults, which are fine and can be changed later if necessary.
There are two exceptions, though. Under "Choosing the default editor used
by Git," choose VS Code instead of Vim. And in the section called
"Changing the name of the initial branch in new repositories," select the
option to use "main" as the default branch name instead of "master." If not,
the suggested defaults are fine; you can always change them later if
necessary.

To ensure that Git is installed on Windows, close all shell windows and
open a new one. This will load the changes to our PATH variable. Then type
the following

git –version

This will show the version you have installed.

For MacOs, you can install Git with XCode. First, open your Terminal.
Type the following:

git –version

There should be a message that git is not found, and there will be a
suggestion to install it. Or you could just type in xcode-select –install to
install it directly.

Once installed, you need to set it up and register a new account, and you are
good to go!

CHAPTER 2 - CREATE YOUR FIRST DJANGO PROJECT
In this chapter, we'll build a Django website. Our website will have a simple
homepage that says, "Welcome to my website." Let’s get started.

Setup
To start, fire up a new command prompt window or use VS Code's in-built
terminal. The latter can be accessed by selecting "Terminal" from the menu
bar and "New Terminal" from the drop-down menu.

Verify that you are not in a preexisting virtual environment by ensuring that
the command prompt does not have any parentheses. To be sure, type
"deactivate," and you'll be turned off. You can then use the following
commands in the code directory on your Desktop to make a helloworld
folder for our new website.

As you can see in the above screenshot, there is the first code to call in the
folder we have created in the previous chapter called scripts, and we made

another folder within it called helloworld. Then we activated our virtual
environment and installed the version of Django we wanted to use for this
project.

From here, you should remember the Django startproject command. This
command will create a new Django project. Let us call our new project
first_website. Include the space + full stop (.) at the end of the command
so that the program will be installed in the current folder.

The most important thing for a web developer is the project structure. You
need an organized space and directories for all your projects and programs.
Django will automatically set up a project structure for us in this script. If
you want to see what it looks like, you can open the new folder on your
Desktop. The Ch1-setup is the folder from chapter 1. We don’t need that
now.

However, you can see that the .venv folder was created with our virtual
environment. Django added the first_website folder and python file. If you
open the first_website folder, you will find 5 new files:

__init__.py shows that the folder's files are part of a Python package. We
can't install files from another folder without this file, which we will do a
lot in Django.

asgi.py offers the option of running an Asynchronous Server Gateway
Interface.

settings.py manages the settings of our Django project.

urls.py tells Django what pages to make when a browser or URL asks for
them.

wsgi.py stands for Web Server Gateway Interface. WSGI helps Django
serve our web pages.

The manage.py file is not a core component of the Django project, but it is
used to run Django commands like starting the local web server or making a
new app.

Let's test our project using the light web server with Django for local
development. The runserver command will be used. It can be found in the
file manage.py. Type in this command:

python manage.py runserver

Once that runs, you can test your server by going to this with your web
browser: http://127.0.0.1:8000/

You may see the error in the above screenshot too. Don’t fret. That is
Django telling you that we haven't made any changes to our existing
database (i.e., "migrated") yet. This warning is harmless because we won't
use a database in this chapter.

But if you want to stop the annoying warning, you can get rid of it by
pressing Control + c to stop the local server and then running the following
command line:

python manage.py migrate.

Django has migrated its pre-installed apps to a new SQLite database. The
equivalent file in our folder is called db.sqlite3.

Warnings should now be gone if you rerun python manage.py runserver.

Let us learn a few concepts you need to know before building our first
Django app together.

HTTP Request/Response Cycle
A network protocol is a set of rules for formatting and processing data. It's
like a common language for computers that lets them talk to each other
even if they are on opposite sides of the world and have very different
hardware and software.

HTTP is a protocol that works with a client-server model of computing.
When you go to a website, your computer, or "client," sends a "request,"
and a "server" sends back a "response." The client doesn't have to be a
computer, though. It could be a cell phone or any other device that can
connect to the internet. But the process is the same: a client sends an HTTP
request to a URL, and the server sends an HTTP response back.

In the end, a web framework like Django takes HTTP requests to a given
URL and sends back an HTTP response with the information needed to
render a webpage. All done. Usually, this process involves finding the
correct URL, connecting to a server, logic, styling with HTML, CSS,
JavaScript, or static assets, and then sending the HTTP response.

This is what the abstract flow looks like:

HTTP Request -> URL -> Django combines database, logic, styling -> HTTP
Response

Model-View-Controller (MVC) and Model-View-
Template (MVT)
The Model-View-Controller (MVC) sequence has become a popular way to
split up an application's data, logic, and display into separate parts over
time. This makes it easier for a programmer to figure out what the code

means. The MVC pattern is used by many web frameworks, such as Ruby
on Rails, Spring (Java), Laravel (PHP), ASP.NET (C#), and many others.

There are three main parts to the traditional MVC pattern:

Model: Takes care of data and the primary project logic

View: Gives the model's data in a specific format.

Controller: Takes input from the user and does application-specific logic.

Django's method, often called Model-View-Template, only loosely follows
the traditional MVC method (MVT). Developers who have worked with
web frameworks before might find this confusing at first. In reality,
Django's approach is a 4-part pattern that also includes URL Configuration.
A better way to describe it would be something like MVTU.

Here's how the Django MVT pattern works:

Model: Manages data and core business logic

View: Tells the user what data is sent to them, but not how it is shown.

Template: Shows the information in HTML, with CSS, JavaScript, and
Static Assets as options.

URL Configuration: Regular-expression components set up for a View

This interaction is a crucial part of Django, but it can be hard to understand
for new users, so let's draw a diagram of how an HTTP request and
response cycle works. When a URL like https://djangoproject.com is typed
in, the first thing that happens in our Django project is that a URL pattern
(contained in urls.py) that matches it is found. The URL pattern is linked to
a single view (in views.py) that combines the data from the model (in
models.py) and the styling from a template (any file ending in .html). After
that, the view gives the user an HTTP response.

The flow looks like below:

HTTP Request -> URL -> View -> Model and Template -> HTTP Response

Creating A Blank App
Django uses apps and projects to keep code clean and easy to read. Multiple
apps can be part of a single Django project. Each app will have a set of
functions to control. For example, to build an e-commerce site, you may use
one app to log in users, another to handle payments, and another to list item
details. That's three different apps that are all part of the same main project.

You must activate the virtual environment to add a new app to your project.
Do you still remember how to do that?

Type in one of the following lines on your Windows or Mac:

.venv\Scripts\Activate.ps1
OR

source .venv/bin/activate

We will create a new project (or folder) in our Scripts directory. Let us call
it my_project. Remember to put the space and full stop (.) at the end of the
command so that it is installed in the current folder we are working in.

django-admin startproject my_project .

Let's take a moment to look at the new folders that Django has set up for us
by default. If you want to see what it looks like, you can open the new
my_project folder on the Desktop. You may not see the.venv folder because
it is hidden.

Let's try out our new project using the light web server with Django for
local development. The runserver command will be used. It can be found in
the file manage.py. Use the following line:

python manage.py runserver
OR

python3 manage.py runserver

Now visit http://127.0.0.1:8000/ on your web browser to test the server.
Don’t worry about the migration error. You know it. Let’s fix it. Type in the
following:

python manage.py migrate

Let us put our app up in there.

If you have a running server, you must deactivate it by pressing Ctrl + C.
You then use the Django startapp command to create the new project and
follow it by the name of your new app. I will call my app webpages.

python manage.py startapp webpages

If you look at the folder we have been using, you will find the new folder
for webpages:

Let's go over what each new webpages app file does:

admin.py is a file that tells the Django Admin app how to work.

apps.py is a file that tells the app how to work and migrations/ keeps track
of changes to our models.py file so that it stays in sync with the models in
our database.

models.py is where our database models are written, and Django
automatically turns them into database tables and tests.

tests.py is for testing views in an app.

views.py is where we handle the logic for our web app's requests and
responses.

Notice that the MVT pattern's model, view, and URL are there from the
start. Only a template is missing, which we'll add soon.

Even though our new app is part of the Django project, we still have to
make Django "know" about it by adding it to the my_project/settings.py file.
Open the file in your text editor and scroll down to where it says
"INSTALLED APPS." There are already six Django apps there.

At the end, add webpages.apps.WebpagesConfig.

What is PagesConfig? The only thing you have to know at this point is that
this is a function that we call from the apps.py file that Django created in
the webpages folder.

Designing Pages
Web pages on the internet are linked to a database. To power a single
dynamic web page in Django, you need four separate files that follow this
MVT pattern:

models.py

views.py

templates.html (any HTML file will do)

urls.py

Since our project today does not need to connect to a database, we can
simply hardcode all the data into a view and skip the MVT model. That is
what we will do now. This means everything you do on your end can only
be accessed from your computer.

So, the next thing to do is to make our first page (view). Open the views.py
file in the webpages folder and edit the code like this:

from django.shortcuts import render

Create your views here.
from django.http import HttpResponse

def homePageView(request):
 return HttpResponse("My New App!")

Basically, we're saying that whenever we call the function homePageView,
Django should display the text "My New App!" In particular, we've
imported the built-in HttpResponse method so that we can give the user a
response object. We made a function called homePageView that takes the
request object and sends back the string "My New App!" as a response.

Function-based views (FBVs) and class-based views are the two types of
views in Django (CBVs). In this example, our code is a function-based
view. It is clear and easy to implement. Django started out with only FBVs,
but over time it added CBVs, which make it easier to reuse code, keep
things DRY (Don't Repeat Yourself), and allow mixins to add more
functionality. The extra abstraction in CBVs makes them very powerful and
short, but it also makes them more complicated for people who are new to
Django to read.

Django has a number of built-in generic class-based views (GCBVs) to
handle common use cases like creating a new object, forms, list views,
pagination, and so on. This is because web development tends to be
repetitive. In later chapters of this book, we will use GCBVs a lot.

So, technically, there are three ways to write a view in Django: function-
based views (FBVs), class-based views (CBVs), and generic class-based
views (GCBVs). This customization is useful for more experienced
developers, but it is hard to understand for new developers. Many Django
developers, including the person who wrote this article, like to use GCBVs
when they can and switch to CBVs or FBVs when they have to. By the end
of this book, you'll have tried all three, so you can decide for yourself which
one you like best.

Next, we need to configure the URLs. Notice that there is no urls.py in the
webpages folder. We need to create it. Once you do that, write in the
following code:

from django.urls import path
from .views import homePageView

urlpatterns = [
 path("", homePageView, name="home"),
]

On the first line, we import the path from Django to link our URL; on the
second line, we import the views from the same folder. By calling the
views.py file .views, we are telling Django to look for a views.py file in the
current folder and import the homePageView function from there.

Our URL file is made up of three parts:

a Python regular expression for the empty string " ",

a reference to the view called "homePageView," and

an optional named URL pattern called "home."

In other words, if the user asks for the homepage, represented by the empty
string "," Django should use the view called homePageView.

Just one last thing now. Now we need to update the urls.py file in our
django my_project folder. It's common for a Django project to have more
than one app in our webpages, each app needs its own URL path.

All you need to do is edit the code like this:

from django.contrib import admin
from django.urls import path
from django.urls import path, include

urlpatterns = [
 path("admin/", admin.site.urls),
 path("", include("webpages.urls")),
]

Now let us test our Home Page. Restart your server with the following code
and reload that url in your browser:

python manage.py runserver

Now, let us move on.

Using Git

In the last chapter, we set up Git, which is a version control system. Let's
put it to use. The first step is to add Git to our repository or start it up. Make
sure you have Control+c pressed to stop the local server, and then run the
command git init.

git init

When you run this, git will take control of the script. You can check and
track changes by typing the command git status.

It is not advisable to allow our virtual environment, .venv, to be controlled
by git. It shouldn't be in Git source control because it often contains secret
information like API keys and the like. To hack this, use Django to create a
new file called .gitignore that tells Git what to ignore.

.venv/

.venv will no longer be there if you run git status again. Git has ‘ignored’ it.

We also need to track the packages that are installed in our virtual
environment. The best way to do that is to put this data in a requirements.txt
file. Type the following command line:

pip freeze > requirements.txt

This will create the requirements.txt file and output the data we need. We
need this because besides installing Django, there are many other packages
that Django relies on to run. When you install one Python package, you
often have to install a few others that it depends on as well. A
requirements.txt file is very important so that it can help us see all the
packages.

Now, we want to ensure that we will not have to manually add anything. We
will automate it so that it inputs whatever we install moving on. Use this
code:

(.venv) > git add -A

(.venv) > git commit -m "initial commit"

You can now exit the virtual environment by running “deactivate”.
Congratulations! In this chapter, we've talked about a lot of essential ideas.
We made our first Django app and learned how projects and apps are set up
in Django. We learned about views, URLs, and the Django web server built
into the program. Move on to Chapter 3, where we'll use templates and
class-based views to create and deploy a more complex Django app.

CHAPTER 3 - DJANGO APP WITH PAGES
In this chapter, we'll create, test, and deploy a website app with a homepage
and a services page. We haven't learned about databases, so you don’t have
to worry much. However, we'll cover that in the next chapter. We'll learn
about class-based views and templates, which are the building blocks for
the more complex web applications we'll make later in the book.

In the previous chapter, the process of creating our blank app involves some
initial setup where we need to create some new .py app files for the server.
We will do the same here.

Setup
You have learned how to set up Django to create an application in chapter 2.
Use the knowledge to

make a new folder (project) called "website" for our code and go
there.

create a new virtual environment with the name .venv and turn it on.

install Django.

create a new Django project and call it django_project

make a new app and call it Pages

Make sure, at the command line, that you are not working in a virtual
environment that is already set up.

The steps outlined above are in easy steps, with each of the following lines
a command you must run before the next:

> cd OneDrive\Desktop\script
> mkdir website
> cd website
> python -m venv .venv
> .venv\Scripts\Activate.ps1

(.venv) > python -m pip install django~=4.0.0
(.venv) > django-admin startproject django_project .
(.venv) > python manage.py startapp pages

Remember that we need to add the new project to the INSTALLED APPS
setting in the settings.py file under the django_project folder. Now, open
this file in your text editor and add the following line to the end:

"pages.apps.PagesConfig",

The migrate function moves the database and the runserver tool to start the
local web server. Refer to chapter 2.

Adding Templates
A good web framework must make it easy to make HTML files. In Django,
we use templates, which are separate HTML files that can be linked
together and also have some basic logic built into them.

Remember that in the last chapter, the phrase "My First App" was
hardcoded into a views.py file on our first site. That works technically, but
if you want to build a big website, you will suffer a lot going that route. The
best way is to link a view to a template because the information in each is
kept separate.

In this chapter, we'll learn how to use templates to make our homepage and
about page. In later chapters, you'll learn how to use templates to develop
websites with hundreds, thousands, or even millions of pages that only need
a small amount of code.

The first thing to learn is where to put templates in a Django project. By
default, Django's template loader looks inside each app for templates that
go with it. But the structure is a little confusing: each app needs a new
templates directory, another directory with the same name as the app, and
then the template file.

That implies that there will be a new folder in the pages folder called
templates. Inside templates, we need another folder with the name of the
app as pages, and then we will now save our template itself inside that
folder as home.html.

Now, let us create a templates folder. Enter the pages folder in the code and
type in the following:

mkdir templates

Next, we have to add the new template to the settings.py file inside the
django project so that Django knows where our new templates directory is.
Add the following to the TEMPLATES setting under "DIRS."

[BASE_DIR / "templates"],

So it looks like this:

Make a new file called home.html in the templates directory. You can do
this in your text editor. In Visual Studio Code, click "File" and then "New
File" in the top left corner of the screen. Make sure to give the file the
correct name and save it in the right place.

For now, a simple headline will be in the home.html file.

<h1>Homepage
 Welcome to My Website
</h1>

That’s it. We are done creating our template. The next thing is for us to
update the URL and view files.

Class and Views
You have seen how we deployed function-based views in the previous
chapter. That was how Django was when it came. But doing that means
developers will repeat the same patterns over and over again, writing a view
that lists all objects in the model, and so on.

Classes are an essential part of Python, but we won't go into detail about
them in this book. If you need an introduction or a refresher, I suggest
reading the official Python documentation, which has an excellent tutorial
on classes and how to use them.

We will use the built-in TemplateView to show our template in our view.
Here is how to do that: Go to the pages folder and edit the views.py file

with this code:

from django.shortcuts import render

Create your views here.
from django.views.generic import TemplateView

class HomePageView(TemplateView):
 template_name = "home.html"

Since HomePageView is now a Python class, we had to capitalize it. Unlike
functions, classes should always start with a capital letter. The logic for
showing our template is already built into the TemplateView. All we need to
do is tell it the name of the template.

Our URLs
Last, we need to change our URLs. You may remember from Chapter 2 that
we have to make changes in two places. First, we change the django
project/urls.py file so that it points to our pages app. Then, we match views
to URL routes within pages.

Let's start with the urls.py file in the django project folder.

Do you remember this code? On the second line, we add include to point
the current URL to the Pages app.

Now, go ahead and create a new file in the pages folder and name it urls.py,
and put the following code in it. This pattern is almost the same as what we
did in Chapter 2, with one big difference: when using Class-Based Views,
you always add as view() to the end of the view name.

from django.urls import path
from .views import HomePageView

urlpatterns = [
 path("", HomePageView.as_view(), name="home"),
]

And that is it! You can run the code now by typing the command:

python manage.py runserver

Then go to your browser.

We did it!

About Page
The process is the same. The only difference is in the content. We'll create a
new template file, a new view, and a new url route. How will you do this?
Start by creating a new template file called about.html within the templates
folder and put a short HTML header in it.

<h1>About Me</h1>

Now, like you did for the homepage, go to the views.py file in pages and
create a view for this new page template you just built. Add the following
code after the Home page view that is already there:

class AboutPageView(TemplateView):
 template_name = "about.html"

Lastly, you need to go to the urls and import the about page view name so
that you can connect it to a URL. Use the code below:

path("about/", AboutPageView.as_view(), name="about"),

Go back to your browser and try the url http://127.0.0.1:8000/about

Extending Templates
The best thing about templates is how you can extend them. Most websites
have headers or footers that you see on every page. How can you do that?

First, we make a file called base.html within the templates folder, and we
will put in a header with links to the two pages we have. You can call this
file anything, but many developers use base.html.

Django has a simple templating language that we can use to add links and
simple logic to our templates. The official documentation shows the full list

of template tags that come with the program. Template tags are written like
this: %something%, where "something" is the template tag itself. You can
make your own template tags, but we won't cover that here.

We can use the built-in url template tag, which takes the URL pattern name
as an argument, to add URL links to our project. Create the base.html file
and add the following code:

<header>
 Home |
 About
</header>

{% block content %} {% endblock content %}

Now let us go and edit the home.html and about.html files to show the new
base.html code. The extends method in the Django templating language can
be used for this.

Open the home.html and change the code that was there to this:

{% extends "base.html" %}

{% block content %}
<h1>Welcome to my website!</h1>
{% endblock content %}

Open the about.html and change the code that was there to this:

{% extends "base.html" %}

{% block content %}
<h1>About Me</h1>
{% endblock content %}

Reload your server in the browser, and you will see the header showing on
both pages like so:

Yay! We have created a two-page website. Let us talk about one practice
that differentiates good programmers from great ones.

Testing
When a codebase changes, it's crucial to add automated tests and run them.
Tests take a little time to write, but they pay off in the long run.

Unit testing and integration testing are the two main types of testing. Unit
tests look at a single piece of functionality, while integration tests look at
how several pieces work together. Unit tests only test a small amount of
code, so they run faster and are easier to keep up to date. Integration tests
take longer and are harder to keep up with because the problem comes from
when they fail. Most developers spend most of their time writing unit tests
and only a few integration tests.

The Python standard library has a built-in testing framework called unittest.
It uses TestCase instances and a long list of assert methods to check for and
report failures.

On top of Python's unittest, Django's testing framework adds several

Base class for TestCase. These include a test client for making fake Web
browser requests, many Django-specific additional assertions, and four test
case classes: SimpleTestCase, TestCase, TransactionTestCase, and
LiveServerTestCase.

In general, you use SimpleTestCase when you don't need a database, while
you use TestCase when you do want to test the database.
LiveServerTestCase starts a live server thread that can be used for testing
with browser-based tools like Selenium. TransactionTestCase is useful if
you need to test database transactions directly.

One quick note before we move on: you may have noticed that the names of
methods in unittest and django.test are written in camelCase instead of the
more Pythonic snake case pattern. Because unittest is based on the jUnit
testing framework from Java, which does use camelCase, camelCase
naming came with unittest when it was added to Python.

If you look in our pages app, you'll see that Django has already given us a
file called tests.py that we can use. Since our project hasn't got to do with a
database, we'll import SimpleTestCase at the top of the file. For our first
test, we'll make sure that both of our website's URLs, the homepage and the
"about" page, return the standard HTTP status code of 200, which means
that the request was successful.

from django.test import TestCase

Create your tests here.
from django.test import SimpleTestCase

class HomepageTests(SimpleTestCase):
 def test_url_exists_at_correct_location(self):
 response = self.client.get("/")
 self.assertEqual(response.status_code, 200)

class AboutpageTests(SimpleTestCase):
 def test_url_exists_at_correct_location(self):
 response = self.client.get("/about/")
 self.assertEqual(response.status_code, 200)

To run the test, you must first stop the server with Ctrl + C and then type in
the command python manage.py test to run the tests.

If you see an error like "AssertionError: 301 does not equal 200," you
probably forgot to add the last slash to "/about" above. The web browser
knows to automatically add a slash if it's not there, but that causes a 301
redirect, not a 200 success response.

How about we test the name of the urls of our pages? In our urls.py file in
pages, we added "home" to the path for the homepage and "about" to the
path for the about page. We can run a test on both pages with a useful
Django function called reverse. Now, open the test.py file, and edit it. First,
import reverse at the top of the code and add a new unit test for each below
it. This is the latest updated code in the test.py file:

from django.test import SimpleTestCase
from django.urls import reverse

class HomepageTests(SimpleTestCase):
 def test_url_exists_at_correct_location(self):
 response = self.client.get("/")
 self.assertEqual(response.status_code, 200)

 def test_url_available_by_name(self):
 response = self.client.get(reverse("home"))
 self.assertEqual(response.status_code, 200)

class AboutpageTests(SimpleTestCase):
 def test_url_exists_at_correct_location(self):

 response = self.client.get("/about/")
 self.assertEqual(response.status_code, 200)

 def test_url_available_by_name(self):
 response = self.client.get(reverse("about"))
 self.assertEqual(response.status_code, 200)

Now, rerun the test.

So far, we have tested where our URLs are and what they are called, but not
our templates. Let's ensure that the right templates, home.html, and
about.html, are used on each page and that they show the expected content
we wrote inside the templates.

Let us use assertTemplateUsed and assertContains. Update the test.py code
to become this:

from django.test import SimpleTestCase
from django.urls import reverse

class HomepageTests(SimpleTestCase):
 def test_url_exists_at_correct_location(self):
 response = self.client.get("/")
 self.assertEqual(response.status_code, 200)

 def test_url_available_by_name(self):
 response = self.client.get(reverse("home"))
 self.assertEqual(response.status_code, 200)

 def test_template_name_correct(self):
 response = self.client.get(reverse("home"))
 self.assertTemplateUsed(response, "home.html")

 def test_template_content(self):
 response = self.client.get(reverse("home"))
 self.assertContains(response, "<h1>Welcome to my website!</h1>")

class AboutpageTests(SimpleTestCase):
 def test_url_exists_at_correct_location(self):
 response = self.client.get("/about/")
 self.assertEqual(response.status_code, 200)

 def test_url_available_by_name(self):
 response = self.client.get(reverse("about"))
 self.assertEqual(response.status_code, 200)

 def test_template_name_correct(self):
 response = self.client.get(reverse("about"))
 self.assertTemplateUsed(response, "about.html")

 def test_template_content(self):
 response = self.client.get(reverse("about"))
 self.assertContains(response, "<h1>About Me</h1>")

If an experienced programmer looks at our test code, they may scoff at us
because it repeats a lot. For example, we had to set an answer for each of
the eight tests.

In Django coding, there is a rule called Don't Repeat Yourself (DRY). This
rule makes code clean. However, unit tests work best when they are self-
contained and very verbose. As a test suite grows, it might be better for
performance to combine multiple assertions into fewer tests. However, that
is an advanced and often subjective topic that is beyond the scope of this
book.

In the future, especially when we start working with databases, we'll do a
lot more testing. For now, it's essential to see how easy and important it is to
add tests to our Django project whenever we add new features.

Now, let us use Git to track the changes. You can upload your code to
GitHub if you have a repository. You can create one for your Django

projects. Also, remember to create a .gitignore file in your project folder
and put .venv/ so that we will keep our virtual environment out of the
checks. Then run the git add -A and the git commit -m "initial commit".

Now go to GitHub. If you don’t already have a GitHub account, it’s time
you created one. You must now create a new repository and call it "pages,"
and make sure the "Private" radio button is selected. Then click the button
that says "Create repository."

Scroll to the bottom of the next page until you see "...or push an existing
repository from the command line." Copy the two commands there and
paste them into your terminal.

It should look like the example below, but instead of MacVicquayns, your
GitHub username should be there.

git remote add origin https://github.com/MacVicquayns/pages.git
git push -u origin main

Website Production
To deploy our new web project to the internet so that everyone can access
it, we need to put our code on an external server and database. What we
have done is local code. That only lives on our computer. We need
production code that will be on a server outside of our computer that
everyone can access.

The settings.py in our django_project folder is used to set up a new project
for local development. Because it's easy to use, we have to change a number
of settings when it's time to put the project into production.

Django comes with its own basic server, which can be used locally but not
in a production setting. You can choose between Gunicorn and uWSGI.
Gunicorn is the easiest to set up and works well enough for our projects, so
we will use that.

We will use Heroku as our hosting service because it is free for small
projects, is used by a lot of people, and is easy to set up.

Heroku
Search for Heroku on your search engine and open the official website.
Create a free account with the registration form and wait for an email with a
link to confirm your account. A link in the verification email takes you to
the page where you can set up your password. Once you've set everything
up, the site will take you to the dashboard.

Now that you have signed up, you need to install Heroku's Command Line
Interface (CLI) so that we can deploy from the command line. We currently
work on our Pages project in a virtual environment, but we want Heroku to
be available everywhere on our machine and not only in the virtual
environment. So you can open a new command line terminal for this.

On Windows, go to the Heroku CLI page to learn how to install the 32-bit
or 64-bit version correctly. For macOS, you can use Homebrew to install it.
Homebrew is already on your Mac computer. Type this code in a new
terminal tab, not in a virtual environment.

brew tap heroku/brew && brew install heroku

Once the installation is done, you can close the new command line tab and
go back to the first tab with the pages virtual environment open.

Type "heroku login" and follow the instructions to use the email address
and password you just set up for Heroku to log in.

Now, we are ready to deploy the app online.

Let’s Deploy
The first thing to do is to set up Gunicorn, which is a web server for our
project that is ready for production. Remember that we've been using

Django's own lightweight server for local testing, but it's not good enough
for a live website. Let us use Pip to install Gunicorn.

Type in the following code:

python -m pip install gunicorn==20.1.0

Step two is to make a file called "requirements.txt" that lists all the Python
dependencies that our project needs. That is, all of the Python packages we
have installed in our virtual environment right now. This is important in
case a team member, or we ever want to start over with the repository. It
also lets Heroku know that the project is written in Python, which makes
the deployment steps easier.

To make this file, we will tell the pip freeze command to send its output to a
new file called requirements.txt. Use the code below:

python -m pip freeze > requirements.txt

The third step is to look in the django project and add something to the
settings.py file. Go to the ALLOWED HOSTS setting, which tells us which
host/domain names our Django site can serve. This is a way to keep HTTP
Host header attacks from happening. For now, we'll use the asterisk * as a
wildcard so that all domains will work. We'll learn later in the book how to
explicitly list the domains that should be allowed, which is a much safer
way to do things.

Step four is to make a new Procfile in the same folder as manage.py (the
base folder). Go to the folder where manage.py is, create a new file, and
name it Procfile. The Procfile is unique to Heroku and tells you how to run
the app in their bundle. In this case, inside the Profile, we're telling the web
function to use the gunicorn server, the WSGI configuration file at

django_project.wsgi, and the --log-file flag to show us any logging
messages. Type the following line inside the Profile.

web: gunicorn django_project.wsgi --log-file -

The last step is to tell Heroku which version of Python to use. This will let
you quickly know what version to use in the future. Since we are using
Python 3.10, we need to make a runtime.txt file that is just for it. Using
your text editor, create this new runtime.txt file in your text editor in the
same folder as the Procfile and manage.py files.

Run python --version to find out what version of Python is being used and
copy it and paste it into the new runtime.txt file. Make sure everything is in
small letters.

Check the changes with git status, add the new files, and then commit the
changes:

git status
git add -A
git commit -m "New updates for Heroku deployment"

The last step is to use Heroku to put the code into action. If you've ever set
up a server on your own, you'll be surprised at how much easier it is to use
a platform-as-a-service like Heroku.

Here's how we'll do things:

Heroku: make a new app

Disable the static file collection (we'll discuss this later).

The code was sent to Heroku.

start the Heroku server so the app can be used by people

visit the app's URL, which Heroku gives you.

The first step, making a new Heroku app, can be done from the command
line with the heroku create command. Heroku will give our app a random
name, like ⬢ intense-inlet-86193 in my case. You will have a different
name.

The heroku create command also makes a remote for our app called
"heroku." Type git remote -v to see this.

With this new remote, we can push and pull code from Heroku as long as
the word "heroku" is in the command.

At this point, we only need one more set of Heroku setup, and that is to tell
Heroku to start ignoring static files like CSS and JavaScript. Django will
optimize these for us by default, which can cause problems. We'll talk about
this in later chapters, so for now, just run the command below:

heroku config:set DISABLE_COLLECTSTATIC=1

Now, use the following line to push the code to Heroku:

git push heroku main

We're done! The final step is to make sure our app is up and running. If you
type the command heroku open, your web browser will open a new tab with
the URL of your app:

You don't have to log out of your Heroku app or leave it. It will keep
running on its own at this free level, but you'll need to type "deactivate" to
leave the local virtual environment and move on to the next chapter.

Congratulations on getting your second Django project up and running.
This time, we used templates and class-based views, explored URLs in
more depth, added basic tests, and used Heroku. Don't worry if the
deployment process seems too much for you. Deployment is complex, even

with a tool like Heroku. The good news is that most projects have the same
steps, so you can use a deployment checklist each time you start a new
project.

In the next chapter, we'll start our first database-backed project, a Message
Board website, and see where Django shines. We'll use templates and class-
based views to build and deploy a more complex Django app.

CHAPTER 4 - CREATE YOUR FIRST DATABASE-DRIVEN

APP AND USE THE DJANGO ADMIN
In this chapter, we'll build a basic Message Board application where users
can post and read short messages. This will be the first time we use a
database. We'll look at Django's powerful built-in admin interface, which
lets us change our data in a way that is easy to understand. After adding
tests, we'll push our code to GitHub and put the app on Heroku.

Thanks to the powerful Object-Relational Mapper (ORM) in Django, there
is built-in support for MySQL, PostgreSQL, Oracle, MariaDB, and SQLite
as database backends. As developers, we can write the same Python code in
a models.py file, and it will automatically be turned into the correct SQL for
each database. Only the DATABASES section of our settings.py file that is
inside the django project folder needs to be changed. This really is a great
feature!

Django uses SQLite by default for local development because it is a file-
based database and, therefore, much easier to use than the other database
options, which require a separate server to run in addition to Django.

Initial Setup
At this point in the book, we've already set up a few Django projects, so we
can quickly go through the basic commands to start a new one. Here's what
we need to do:

Create a folder called message-board to store our code.

Make a new project called django_project and install Django in a virtual
environment.

Make a new Django app called posts

update the settings file at django project/settings.py.

Type the following commands into a new command line console.
Remember that you must run each line before typing the next:

> cd C:\Users\OneDrive\Desktop\script

> mkdir message-app

> cd message-app

> python -m venv .venv

> .venv\Scripts\Activate.ps1

(.venv) > python -m pip install django~=4.0.0

(.venv) > django-admin startproject django_project .

(.venv) > python manage.py startapp posts

Now, let’s add the new app, posts to the INSTALLED_APPS section of our
settings.py file in the django_project folder. Do you remember the way to
do that?

Add the following line to the section:

"posts.apps.PostsConfig",

Then, use the migrate command to get started with a database already
configured for use with Django.

python manage.py migrate

You should see db.sqlite3 among the new files now representing the SQLite
database.

When you first run either migrate or runserver, a db.sqlite3 file is generated,
but the migrate command will update the database to reflect the current
state of any database models that are part of the project and are included in
INSTALLED APPS. That is to say, every time you change a model, you'll
need to execute the migrate command to ensure the database is in sync with
your changes. More to come on this.

Use the runserver to launch our local server and check whether it’s working.

python manage.py runserver

Now go to the local URL on your browser: http://127.0.0.1:8000/

If you don’t see the Django welcome page, there is something wrong with
your script.

Let’s Create a Database Model
The first course of action is to build a database structure that can be used to
save and display user-submitted content. This model can be easily
converted into a database table with the help of Django's ORM. While
many different database models may be required for a complex Django
application, this simple message board program simply requires a single
one.

Open the models.py file in the posts folder to view the Django-supplied
default code.

In the first line there, as you can see, Django imports a module called
models to allow us to create new database models that can "model" our
data. We need a model to save the text of a message board post, and we can
achieve so by adding the following lines:

class Post(models.Model):
 text = models.TextField()

Keep in mind that we just made a new database model called Post, which
has a field text. The type of information stored in this TextField(). Model
fields in Django may store a wide variety of data, including text, dates,
numbers, emails, and more.

Activate the models
Our new model is complete; the next step is to put it into action. In the
future, updating Django will involve a two-step process anytime a model is
created or modified:

To begin, we use the makemigrations command to generate a migrations
file. By using migration files, we can keep track of modifications made to
the database models over time and debug issues as they arise.

Second, we use the migrate command, which runs the commands in our
migrations file, to construct the database.

Ensure that the local server is stopped. You can stop it by typing Control + c
on the command line. After that, run python manage.py makemigrations
posts and python manage.py migrate.

Please keep in mind that the last name is optional after makemigrations. A
migrations file will be generated for all accessible modifications in the
Django project if you simply execute python manage.py makemigrations.
That makes sense for a small project with a single app, like ours, but not for

the vast majority of Django projects, which typically involve multiple apps.
So, if you updated the model across different apps, the resulting migrations
file would reflect all of those revisions. Clearly, this is not the best scenario.
The smaller and more concise a migrations file is, the simpler it is to debug
and undo any mistakes. To this end, it is recommended that the name of an
application be specified whenever the makemigrations command is run.

Django Admin
Django's strong admin interface, which allows users to visually interact
with data, is a major selling point for the framework. This is partly due to
the fact that Django's origins lie in its employment as a content
management system for newspapers (Content Management System). The
goal was to provide a place for writers to draft and revise articles outside
the "code" environment. The in-built admin app has matured into a
powerful, ready-made resource for handling any and all parts of a Django
project.

It is necessary to generate a superuser before accessing the Django admin.
Type python manage.py createsuperuser into the command prompt and
enter a username, email address, and password when prompted.

python manage.py createsuperuser

Username (leave blank to use 'jide'): Abby

Email address: abytobyvictoryme@gmail.com

Password:

Password (again):

Superuser created successfully.

The command line console will hide your password as you write it for
security purposes. Run python manage.py runserver to restart the Django
server, then navigate to http://127.0.0.1:8000/admin/ in a web browser. A
screen prompting you to enter your admin login should appear.

Enter the new login details you just registered. The next screen you see is
the Django administration dashboard:

You can adjust the LANGUAGE in the settings.py file. It is set to American
English, en-us, by default. You can access the admin, forms, and other
default messages in a language other than English.

Our post app does not appear on any primary administration pages. Before
this will show on the website, the admin.py file for an app needs to be
updated in the same way that the INSTALLED_APPS settings needs to be
modified in order for the app to be shown in the admin.

For the Post model to be visible, open admin.py in the posts folder in your
preferred text editor and insert the following lines of code.

from .models import Post

admin.site.register(Post)

Now, run the server again and go to the page.

Let's add our first post to the message board to our database. Click the "+
Add" button next to "Posts" and type your own text in the "Text" field.

Then, click "Save." This will take you back to the main Post page. Yet, if
you take a closer look, you'll notice that our new entry is titled "Post object
(1)."

You can change that. Go to the posts folder and open the models.py file.
From there, add a new function with the following code:

def __str__(self):
 return self.text[:50]

We told the code to give the post a title based on the first 50 characters of
the post on the page. If you save this and refresh your admin page, you will
see the change:

All models should have str() methods to make them easier to read.

Views/Templates/URLs
We need to connect our views, templates, and URLs so that the data in our
database can be displayed on the front page. You should recognize this
structure.

First, let's take in the view. Earlier in the book, we displayed a template file
on our homepage using the built-in generic TemplateView. To that end, we

will detail our database model's components. Thankfully, this is very simple
in web development, and Django provides the generic class-based ListView
for this purpose.

Copy and paste the following Python code into the posts/views.py file:

from django.shortcuts import render

Create your views here.

from django.views.generic import ListView
from .models import Post

class HomePageView(ListView):
 model = Post
 template_name = "home.html"

The ListView and Post models are imported on the first and second lines.
HomePageView is a subclass of ListView with the appropriate model and
template declared.

With the completion of our view, we can go on to the next steps of
developing our template and setting up our URLs. So, let's get started with
the basic structure. First, use Django to make a folder named templates.

mkdir templates

Then we need to tell Django to use this new templates directory by editing
the DIRS column in the Templates section in our settings.py file in the
django project folder.

"DIRS": [BASE_DIR / "templates"],

Create a new file in the templates folder, home.html, using your preferred
text editor. The template tag has a built-in looping capability, and ListView
provides us with a context variable named <model>_list, which is the name
of our model. We'll make a new variable called post and then use post.text
to get at the field we want to show. This is the script for the home.html file:

<h1>Message board homepage</h1>

 {% for post in post_list %}
 {{ post.text }}
 {% endfor %}

Now, lastly, we set up our URLs. Go to the urls.py file inside the
django_project folder. Go to the point where we added our posts app and
put include in the second line like so:

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path("admin/", admin.site.urls),
 path("", include("posts.urls")),
]

Next, go to the posts folder and create the urls.py there too. Update that
with the following code:

from django.urls import path
from .views import HomePageView

urlpatterns = [
 path("", HomePageView.as_view(), name="home"),
]

Use python manage.py runserver to restart the server and navigate to the
local url in your browser. Check the home page of our new app.

We're almost finished, but before we call it a day, let's make a few more
forum posts in the Django backend and make sure they show up
appropriately on the front page.

Let’s Add New Posts
Please return to the Admin and make two more posts in order to update our
forum. It will then display the prepared posts automatically on the
homepage when you return to it. Awesome!

Assuming no errors have been encountered, we may now set up the
directory and make a .gitignore file. Make a new .gitignore file in your text
editor and add the following line:

.venv/

Then, after using git status once more to verify that the .venv directory is
being ignored, you can use git add -A to add the desired files and directories
and a first commit message.

Tests
Previously, we used SimpleTestCase because we were testing fixed pages.
Since our project now incorporates a database, we must use TestCase to
generate a replica of the production database for testing purposes. We may
create a new test database, populate it with sample data, and run tests
against it instead of our live database, which is both safer and more
efficient.

To generate test data, we will invoke the hook setUpTestData(). This
feature, introduced in Django 1.8, makes it possible to produce test data
only once per test case rather than once each test, making it much faster
than using the setUp() hook from Python's unittest. However, setUp() is still
commonly used in Django projects. Any such tests should be migrated to
setUpTestData, as this is a proven method of increasing the overall speed of
a test suite.

Let's get our data in order and then double-check that it was saved correctly
in the database, as there is only one field in our Post model: text. To make
sure Django runs them, all test methods should begin with test*. The code
will look like this:

from django.test import TestCase

Create your tests here.

from .models import Post

class PostTests(TestCase):
 @classmethod
 def setUpTestData(cls):
 cls.post = Post.objects.create(text="This is a test!")

 def test_model_content(self):
 self.assertEqual(self.post.text, "This is a test!")

TestCase and Post are imported first. PostTests extends TestCase and uses
setUpTestData to create initial data. In this case, cls.post stores a single item
that may be referred to as self.post in the following tests. Our first test, test
model content, uses assertEqual to verify text field content.

Go to the command line and run this:

python manage.py test

(.venv)> python manage.py test

Found 1 test(s).

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

.

--

Ran 1 test in 0.002s

OK

Destroying test database for alias 'default'...

The test shows no errors! Still, the output ran only one test when we have
two functions. Note that we set the test to only check functions that start
with the name test*!

Now, let’s check our URLs, views, and templates as we did in chapter 3. We
will also check

URL for / and a 200 HTTP status code.

URL for “home”.

The home page shows “home.html” content correctly

Since only one webpage is involved in this project, all of these tests may be
incorporated into the already PostTests class. In the header, select "import
reverse," then add the tests as seen below.

from django.test import TestCase
from django.urls import reverse

from .models import Post

class PostTests(TestCase):
 @classmethod
 def setUpTestData(cls):
 cls.post = Post.objects.create(text="This is a test!")

 def test_model_content(self):
 self.assertEqual(self.post.text, "This is a test!")

 def test_url_exists_at_correct_location(self):
 response = self.client.get("/")
 self.assertEqual(response.status_code, 200)

 def test_url_available_by_name(self):
 response = self.client.get(reverse("home"))
 self.assertEqual(response.status_code, 200)

 def test_template_name_correct(self):
 response = self.client.get(reverse("home"))
 self.assertTemplateUsed(response, "home.html")

 def test_template_content(self):
 response = self.client.get(reverse("home"))
 self.assertContains(response, "This is a test!")

With this, run the test again:

python manage.py test

Found 5 test(s).

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

.....

--

Ran 5 tests in 0.131s

OK

Destroying test database for alias 'default'...

In the previous chapter, we discussed how unit tests work best when they
are self-contained and highly verbose. However, the last three tests are
testing that the homepage works as expected: it uses the correct URL name,
the intended template name, and contains expected content. We can
combine these three tests into one single unit test, test_homepage.

from django.test import TestCase
from django.urls import reverse
from .models import Post

class PostTests(TestCase):
 @classmethod
 def setUpTestData(cls):
 cls.post = Post.objects.create(text="This is a test!")

 def test_model_content(self):
 self.assertEqual(self.post.text, "This is a test!")

 def test_url_exists_at_correct_location(self):
 response = self.client.get("/")
 self.assertEqual(response.status_code, 200)

 def test_homepage(self):
 response = self.client.get(reverse("home"))
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, "home.html")
 self.assertContains(response, "This is a test!")

We want our test suite to cover as much of the code as feasible while still
being straightforward to reason about (both the error messages and the
testing code itself). This revision is much simpler to read and comprehend,
in my opinion.

Now that we've finished making changes to the code for testing, we can
commit them to git.

(.venv) > git add -A

(.venv) > git commit -m "added tests"

[main 89ba70d] added tests

2 files changed, 20 insertions(+), 1 deletion(-)

create mode 100644 posts/__pycache__/tests.cpython-310.pyc

Storing to GitHub

We should use GitHub to host our source code. Message-board is the name
of the repository you will be creating, and if you haven't already done so,
log into GitHub and sign up for an account. For more discreet
communication, choose the "Private" option.

The option to "or push an existing repository from the command line" is at
the bottom of the following page. If you replace my username with your
own GitHub username, the two commands there should look like the next
and may be copied and pasted into your terminal:

git remote add origin https://github.com/MacVicquayns/message-board.git

git branch -M main

git push -u origin main

Setup Heroku
By now, you should have a Heroku account. The following is our
deployment checklist:

install Gunicorn

setup requirements.txt

edit the ALLOWED_HOSTS in settings.py

create Procfile

create runtime.txt

Use Pip to install Gunicorn.

python -m pip install gunicorn==20.1.0

In the past, we would simply set ALLOWED HOSTS to * to accept all
hosts, but this proved to be a flawed and potentially harmful shortcut. Our
level of specificity may and should be increased. Django can be used on
either localhost:8000 or 127.0.0.1:8000. Having used Heroku before, we
know that all Heroku sites will have the.herokuapp.com extension. All three
hosts may be included in the ALLOWED HOSTS setting. Open your
settings.py in the django_project folder and update the
ALLOWED_HOSTS list with the following:

".herokuapp.com", "localhost", "127.0.0.1"

Now, create your Procfile and put this code in it:

web: gunicorn django_project.wsgi --log-file -

Lastly, create a runtime.txt file in the base folder like Procfile. And populate
with this line:

python 3.10.1

Now, commit the new changes to git.

Deploy to Heroku
First, log in to your Heroku account with the heroku login command. Then
use the heroku create to create a new server.

Type in the following to tell Heroku to ignore static pages. This is skipped
when you are creating a blog app.

heroku config:set DISABLE_COLLECTSTATIC=1

After that, we push the code to Heroku.

git push heroku main
Then we scale it.

heroku ps:scale web=1

From the command line, type heroku open to open the new project's URL in
a new browser window. Closing the present virtual environment is as
simple as typing "deactivate" at the prompt.

That’s it! We have built a complete forum message board app. Well done. In
the next section, we will create a blog app.

CHAPTER 5 – BLOG APP
This chapter will focus on developing a Blog application where users may
add, modify, and remove posts.

Each blog post will have its own detail page in addition to being shown on
the homepage. Also covered will be the basics of styling using CSS and
how Django handles static files.

Initial Set Up
The first six steps we take in our development course have not changed. Set
up the new Django project in the following steps:

create a new base folder and call it blog

start a new virtual and install Django

start a new Django project and call it django_project

start a new app and call it blog

migrate the code to set up the database

edit the settings.py file with the correct details.

Let’s get started.

This is the sequence for Windows:

This is for MacOs:

Now go to the settings.py file and update the INSTALLED_APPS section:

Now, run the server and check the local url.

Initial setup complete! Well done!

Database Models
What are the standard features of a blog platform? Say each post contains a
heading, author name, and article. The following code can be pasted into
the models.py file in the blog folder to create a database model:

from django.db import models

Create your models here.

from django.urls import reverse

class Post(models.Model):
 title = models.CharField(max_length=200)
 author = models.ForeignKey(
 "auth.User",
 on_delete=models.CASCADE,
)

 body = models.TextField()

 def __str__(self):
 return self.title

 def get_absolute_url(self):
 return reverse("post_detail", kwargs={"pk": self.pk})

Once the new database model is complete, a migration record can be made,
and an update may be made to the database.

Press Control+c to terminate the server.

You can finish this two-stage procedure by following the instructions below.

python manage.py makemigrations blog

python manage.py migrate

With these lines, we have created our database.

Admin Access
How will we access our data? We need to create Django's backend admin.
Type the following command and then follow the prompts to create a
superuser account with a unique email address and password. For security
reasons, your password will not display as you type it.

python manage.py createsuperuser

Now, we update the admin.py file.

from django.contrib import admin

Register your models here.

from .models import Post

admin.site.register(Post)

Let's add on a couple more blog posts. To add a new post, select the + Add
button that appears next to Posts. All model fields are mandatory by default.
Therefore be careful to give each post an "author" tag.

In order to display the data on our web application, we must now develop
the views, URLs, and templates required to interact with the database.

URLs
To achieve this, we will first configure our urls.py file in the django_project
folder, as we have done in previous chapters, and then our app-level blog
folder’s urls.py file.

Make a new file in the blog app named urls.py and paste the following into
it using your text editor.

from django.urls import path
from .views import BlogListView

urlpatterns = [
 path("", BlogListView.as_view(), name="home"),
]

We imported the views we will do later. We give it a name, home so that we
can use it in our views later on, and the empty string ("") instructs Python to
match all values.

Although giving each URL a name isn't required, it's a good idea to help
keep track of them as your list of URLs expands.

We also need to edit the urls.py file in the django_project folder so that it
will send all blog app requests there.

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path("admin/", admin.site.urls),
 path("", include("blog.urls")),
]

Views
We will be using class-based views. Just a few lines of code in our views
file, and we'll be able to see the results of our Post model in a ListView.

from django.shortcuts import render

Create your views here.
from django.views.generic import ListView
from .models import Post

class BlogListView(ListView):
 model = Post
 template_name = "home.html"

Templates
Now that we have finished with our URLs and views, we can go on to the
next piece of the jigsaw, which is the templates. Previously in Chapter 4, we

learned that we can keep our code tidy by adopting from other templates.
Therefore, we'll begin with a base.html file and an inherited home.html file.

Next, we'll add templates for making and revising blog articles, and those
may all derive from base.html.

We should begin by making a folder to store our new template files. So,
stop your server and type in the code:

mkdir templates

Make two new template files in the templates folder. Call them base.html
and home.html.

The next step is to edit the settings.py file to direct Django to the
appropriate folder to find our templates.

Add this line to the TEMPLATES section:

"DIRS": [BASE_DIR / "templates"],

In the base.html file, put the following:

<!-- templates/base.html -->
<html>

<head>

 <title>Django blog</title>
</head>

<body>
 <header>
 <h1>Django blog</h1>
 </header>
 <div>
 {% block content %}
 {% endblock content %}
 </div>
</body>

</html>

Put this in the home.html:

<!-- templates/home.html -->
{% extends "base.html" %}
{% block content %}
{% for post in post_list %}
<div class="post-entry">
 <h2>{{ post.title }}</h2>
 <p>{{ post.body }}</p>
</div>
{% endfor %}
{% endblock content %}

If you run python manage.py runserver again and then reload the
homepage, we will notice that the Django server is up and running.

Now, that is our first website. But it looks ugly! Let’s fix that.

Add some Style!
We need to add some CSS to our project to enhance the styling. A
fundamental component of any contemporary web application is CSS,
JavaScript, and pictures, which are referred to as "static files" in the Django
ecosystem. Although Django offers enormous flexibility in terms of how
these files are used, this can be very confusing for beginners.

Django will, by default, search each app for a subfolder called static. Or a
folder with the name static in the blog folder. If you remember, this is also
how the templates folder was created.

Stop the local server, then use the following line to create a static folder in
the manage.py file's location.

mkdir static

We must instruct Django to look in this new folder when loading static files.
There is already one line of configuration in the settings.py file, which you
can find at the bottom:

Now, below that, we add the following line:

STATICFILES_DIRS = [BASE_DIR / "static"]

We instruct Django to look for static files in the newly formed static
subfolder.

Use this line to create a CSS subfolder:

mkdir static/css

Use your text editor to create a new file within this folder called base.css
inside the new CSS subfolder. Then fill it with this code to create a page
title and color it red!

Almost there! Add % load static % to the top of base.html to include the
static files in the templates. We only need to include it once because all of
our other templates inherit from base.html. Insert a new line after closing
the <head> tag to include a direct link to the base.css file we just created.

<!-- templates/base.html -->
{% load static %}
<html>

<head>
 <title>Django blog</title>
 <link rel="stylesheet" href="{% static 'css/base.css' %}">

 <head>
 <title>Django blog</title>
 </head>

<body>
 <header>
 <h1>Django blog</h1>
 </header>
 <div>
 {% block content %}
 {% endblock content %}
 </div>
</body>

</html>

Start up the server again and check the URL.

We can also customize other things like font size, type, etc., by tweaking
the css file.

Individual Blog Pages
Individual blog posts can now have their stated features implemented. A
new view, URL, and template will have to be developed.

One must first take in the view. To make things easier, we can utilize the
DetailView, which is built on a generic class. Add DetailView to the import
at the top of the script and generate a new view named BlogDetailView.

from django.shortcuts import render

Create your views here.
from django.views.generic import ListView, DetailView
from .models import Post

class BlogListView(ListView):
 model = Post
 template_name = "home.html"

class BlogDetailView(DetailView):
 model = Post
 template_name = "post_detail.html"

Let's say we want to create a new URL path for our view. Use the code seen
below in the urls.py in the blog folder:

from django.urls import path
from .views import BlogListView, BlogDetailView

urlpatterns = [
 path("post/<int:pk>/", BlogDetailView.as_view(), name="post_detail"),
 path("", BlogListView.as_view(), name="home"),
]

For consistency, we've decided to prefix all blog post URLs with post/. The
next thing to consider is the post entry's primary key, which we'll express as
an integer, int:pk>. I know what you're thinking: "What is the main factor?"
Our database models already have an auto-incrementing primary key86
because Django included it by default. As a result, while we only stated the
fields title, author, and body on our Post model, Django automatically
added an additional field named id, which serves as our primary key. Either
an id or a pk will work to get in.

For our first "Hello, World!" message, we'll use a pk of 1. It's 2 for the
second. The URL structure of our initial post, which will lead us to its
particular entry page, will look like this: post/1/.

If you recall, the get absolute url method on our Post model accepts a pk
argument in this case since the URL specifies it. Primarily, new users often
struggle to grasp the relationship between primary keys and the get absolute
url method. If you are still confused, it may help to read the previous two
paragraphs again. You'll get used to it after some repetition.

After running python manage.py runserver, our first blog post will have its
own URL of http://127.0.0.1:8000/post/1/.

To view the second entry, please visit http://127.0.0.1:8000/post/2/.

The link on the homepage should be updated so that we can easily navigate
to certain blog entries. Replace the current empty link with a href=" % url
'post detail' post.pk % "> in home.html.

{% extends "base.html" %}
{% block content %}
{% for post in post_list %}
<div class="post-entry">
 <h2>{{ post.title }}</h2>
 <p>{{ post.body }}</p>
</div>
{% endfor %}
{% endblock content %}

Check and click the post from the home page.

Testing
New features have been added to our Blog project that we hadn't seen or
tried before this section. We now have a user, various views (a list view of
all blog posts and a detail view for each article), and a Post model with
numerous fields. There is a lot to try out!

To start, we can prepare our test data and validate the Post model. So, this is
how it may look in a nutshell:

from django.test import TestCase

Create your tests here.
from django.contrib.auth import get_user_model
from django.urls import reverse
from .models import Post

class BlogTests(TestCase):
 @classmethod
 def setUpTestData(cls):

 cls.user = get_user_model().objects.create_user(
 username="testuser", email="test@email.com", password="secret"
)
 cls.post = Post.objects.create(
 title="A good title",
 body="Nice body content",
 author=cls.user,
)

 def test_post_model(self):
 self.assertEqual(self.post.title, "A good title")
 self.assertEqual(self.post.body, "Nice body content")
 self.assertEqual(self.post.author.username, "testuser")
 self.assertEqual(str(self.post), "A good title")
 self.assertEqual(self.post.get_absolute_url(), "/post/1/")

 def test_url_exists_at_correct_location_listview(self):
 response = self.client.get("/")
 self.assertEqual(response.status_code, 200)

 def test_url_exists_at_correct_location_detailview(self):
 response = self.client.get("/post/1/")
 self.assertEqual(response.status_code, 200)

 def test_post_listview(self):
 response = self.client.get(reverse("home"))
 self.assertEqual(response.status_code, 200)
 self.assertContains(response, "Nice body content")
 self.assertTemplateUsed(response, "home.html")

 def test_post_detailview(self): # new
 response = self.client.get(reverse("post_detail", kwargs={"pk": self.post.pk}))
 no_response = self.client.get("/post/100000/")
 self.assertEqual(response.status_code, 200)
 self.assertEqual(no_response.status_code, 404)
 self.assertContains(response, "A good title")

 self.assertTemplateUsed(response, "post_detail.html")

First, we test whether the requested URL exists in the correct folder for
both views. Then, we ensure the home.html template is loaded, that the
named URL is being utilized, that the right content is being returned, and
that a successful 200 status code is being returned by creating the test post
listview. To get a detail view of our test post, we must include the pk in
response to the test post - detailview method. We keep using the same
template but expand our tests to cover more edge cases. Since we haven't
written two articles, we don't want a response at /post/100000/, for example.
We also prefer to avoid an HTTP status code of 404. Incorrect examples of
tests that should fail should be sprinkled in from time to time to ensure that
your tests aren't all passing by accident.

Run the new tests to make sure everything is working as it should.

Git
Now, let us do our first Git commit. First, initialize our folder, create the
.gitignore and review all the content we’ve added by checking the git status.

(.venv) > git status

(.venv) > git add -A

(.venv) > git commit -m "initial commit"

We have successfully created a working blog application from scratch.
Django's admin panel allows us to quickly generate, modify, and remove
content. For the first time, we were able to create a detailed view of each
blog post separately by employing DetailView.

CHAPTER 6 – DJANGO WEB FORMS
In this chapter, we'll continue developing the Blog application we started in
Chapter 5 by adding the necessary forms for users to add, modify, or
remove entries from their blogs. To accept user input raises security
problems, making HTML forms one of the more complex and error-prone
components of online development. All submitted forms must be rendered
correctly, validated, and stored in the database.

Django's powerful in-built Forms abstract away much of the difficulties,
making it unnecessary to write this code from scratch. Displaying, making
changes to, or removing a form are some of the many commonplace actions
that Django's built-in generic editing views are catered to.

CreateView
The first step is to provide a link to a website where new blog entries may
be entered into our primary template. It will look like this: <a href="% url
"post new"%>.

Your revised script should now look like this:

{% load static %}
<html>

<head>
 <title>Django blog</title>
 <link href="https://fonts.googleapis.com/css?family=\
Source+Sans+Pro:400" rel="stylesheet">
 <link href="{% static 'css/base.css' %}" rel="stylesheet">
</head>

<body>
 <div>
 <header>
 <div class="nav-left">
 <h1>Django blog</h1>
 </div>

 <div class="nav-right">
 + New Blog Post
 </div>
 </header>
 {% block content %}
 {% endblock content %}
 </div>
</body>

</html>

With this code, we have added the feature to post new content. But now, we
need to add a new URL for the post_new feature. We need to import
BlogCreateView in the urls.py file and add a URL path for post/new/.

from django.urls import path
from .views import BlogListView, BlogDetailView, BlogCreateView

urlpatterns = [
 path("post/new/", BlogCreateView.as_view(), name="post_new"),
 path("post/<int:pk>/", BlogDetailView.as_view(), name="post_detail"),
 path("", BlogListView.as_view(), name="home"),
]

We have seen this URL, views, and template pattern before. To build our
view, we'll import the general class CreateView at the top and then subclass
it to make a new view called BlogCreateView.

Now in the views.py file, update the code to be the following:

from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView
from .models import Post

class BlogListView(ListView):
 model = Post
 template_name = "home.html"

class BlogDetailView(DetailView):
 model = Post
 template_name = "post_detail.html"

class BlogCreateView(CreateView):
 model = Post
 template_name = "post_new.html"
 fields = ["title", "author", "body"]

The BlogCreateView class is where we define the Post database model,
name our template post new.html, and establish the visibility of the title,
author, and body fields in the underlying Post database table.

The final action is to make a template in the text editor and name it
post_new.html. Then, add the following code to your file:

{% extends "base.html" %}
{% block content %}
<h1>New post</h1>
<form action="" method="post">{% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Save">
</form>
{% endblock content %}

Let’s break it down:

In the first line, we must inherit features from our base template.

We are using an HTML form, so the <form> tags with the POST
method are essential because we are sending. If it was to receive,
like a search box, for example, instead of POST, we would use
GET.

Add a {% csrf_token %} from Django provides to protect our form
from bots.

We use {{ form.as_p }} to render the specified fields within
paragraph <p> tags.

Lastly, set the value "Save" for a submit type input.

Launch the server with python manage.py runserver and navigate to the
homepage to check at http://127.0.0.1:8000/.

Click the "+ New Blog Post" option to add a new blog post. If you click it,
you'll be taken to a new page at http://127.0.0.1:8000/post/new/.

Try your hand at writing a new blog entry and publishing it by selecting
"Save" from the file menu.

When it's done, it'll take you to a post-specific detail page at
http://127.0.0.1:8000/post/3/.

Let Anyone Edit The Blog

Developing an edit form for blog entries should follow a similar pattern. To
generate the necessary template, url, and view, we'll again leverage a built-
in Django class-based generic view, UpdateView.

To begin, on each blog page there should be a link to post detail.html where
the post can be edited. The following is the update:

{% extends "base.html" %}
{% block content %}
<div class="post-entry">
 <h2>{{ post.title }}</h2>
 <p>{{ post.body }}</p>
</div>
+ Edit Blog Post
{% endblock content %}

We use <a href>... and {% url ... %} tag to add the link. Within the
tags, we specified the name of the new url, which we will call post_edit,
and we also passed the needed argument, which is the primary key of the
post.pk.

Now, let us create a template file for the new edit page. Call it
post_edit.html and add the following code:

{% extends "base.html" %}
{% block content %}
<h1>Edit post</h1>
<form action="" method="post">{% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Update">
</form>
{% endblock content %}

For the view. Open the views.py file and import UpdateView on the second-
from-the-top line and then subclass it in the new view BlogUpdateView.
Here is the updated code:

from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView, UpdateView
from .models import Post

class BlogListView(ListView):
 model = Post
 template_name = "home.html"

class BlogDetailView(DetailView):
 model = Post
 template_name = "post_detail.html"

class BlogCreateView(CreateView):
 model = Post
 template_name = "post_new.html"
 fields = ["title", "author", "body"]

class BlogUpdateView(UpdateView):
 model = Post
 template_name = "post_edit.html"
 fields = ["title", "body"]

The final action is to modify the file urls.py in the way described below. We
recommend placing the BlogUpdateView and the new route at the very top
of the old urlpatterns.

from django.urls import path
from .views import (
 BlogListView,
 BlogDetailView,
 BlogCreateView,
 BlogUpdateView,

)

urlpatterns = [
 path("post/new/", BlogCreateView.as_view(), name="post_new"),
 path("post/<int:pk>/", BlogDetailView.as_view(), name="post_detail"),
 path("post/<int:pk>/edit/", BlogUpdateView.as_view(), name="post_edit"),
 path("", BlogListView.as_view(), name="home"),
]

Now, if you click on a blog post, the Edit button will show like this:

If you click “+ Edit Blog Post,” it will redirect you to /post/3/edit/. You can
edit anything.

When we modify and click the "Update" button, we're taken to the post's
detail page, where we can see the update. This is due to our
get_absolute_url configuration. If you go to the homepage now, you'll see
the updated information alongside the rest of the posts.

Let Users Delete Posts
As with the post-update form, the post-deletion form is created similarly.

To build the required view, url, and template, we'll employ another generic
class-based view, DeleteView.

To get started, go to post_detail.html to include a delete button on the page.
Use the following code:

{% extends "base.html" %}
{% block content %}
<div class="post-entry">
 <h2>{{ post.title }}</h2>
 <p>{{ post.body }}</p>
</div>
<p>+ Edit Blog Post</p>
<p>+ Delete Blog Post</p>
{% endblock content %}

Make a new template for our post delete page. A file with the following
contents will be created named post_delete.html:

{% extends "base.html" %}
{% block content %}
<h1>Delete post</h1>
<form action="" method="post">{% csrf_token %}
 <p>Are you sure you want to delete "{{ post.title }}"?</p>
 <input type="submit" value="Confirm">
</form>
{% endblock content %}

In this case, the title of our blog post is being shown via the post.title
variable. Since object.title is also a feature of DetailView, we could use that
instead.

Create a new view that extends DeleteView, then update the views.py file to
import DeleteView and reverse lazy at the beginning.

from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView, UpdateView, DeleteView
from django.urls import reverse_lazy
from .models import Post

class BlogListView(ListView):
 model = Post
 template_name = "home.html"

class BlogDetailView(DetailView):
 model = Post
 template_name = "post_detail.html"

class BlogCreateView(CreateView):

 model = Post
 template_name = "post_new.html"
 fields = ["title", "author", "body"]

class BlogUpdateView(UpdateView):
 model = Post
 template_name = "post_edit.html"
 fields = ["title", "body"]

class BlogDeleteView(DeleteView):
 model = Post
 template_name = "post_delete.html"
 success_url = reverse_lazy("home")

DeleteView takes three parameters: a Post model, a post delete.html
template, and a success url property. Exactly what effect does this have?
After deleting a blog article, we want to send the user to the homepage.

In addition to CreateView, UpdateView also has redirects, but we did not
need to supply a success url because of this. Because if get absolute url() is
present on the model object, Django will utilize it by default. In addition,
this attribute is only shown to those that take the time to study and
memorize the documentation, namely the sections on model forms and
success url.

Or the likelihood of an error occurring and subsequent backtracking to
resolve this Django-specific behavior is increased.

In this case, we use reverse_lazy rather than just reverse to delay the URL
redirect's execution until after our view has completed removing the blog
article.

Final step: Make a URL by importing our view BlogDeleteView and
appending a new pattern:

from django.urls import path
from .views import (
 BlogListView,
 BlogDetailView,
 BlogCreateView,
 BlogUpdateView,
 BlogDeleteView,
)

urlpatterns = [
 path("post/new/", BlogCreateView.as_view(), name="post_new"),
 path("post/<int:pk>/", BlogDetailView.as_view(), name="post_detail"),
 path("post/<int:pk>/edit/", BlogUpdateView.as_view(), name="post_edit"),
 path("post/<int:pk>/delete/", BlogDeleteView.as_view(), name="post_delete"),
 path("", BlogListView.as_view(), name="home"),
]

Once you've restarted the server with the python manage.py runserver
command, you can refresh any post page to reveal our "Delete Blog Post"
option.

The new page will show if you click it, asking you to confirm.

Click confirm, and the post is gone!

Testing Program
We have added so many features. Let us test everything to see that they will
continue to work as expected. We have new views for creating, updating,
and deleting posts. We will use three new tests:

def test_post_createview

def test_post_updateview

def test_post_deleteview

The updated script in your tests.py file will be as follows.

from django.test import TestCase

Create your tests here.
from django.contrib.auth import get_user_model
from django.urls import reverse
from .models import Post

class BlogTests(TestCase):
 @classmethod
 def setUpTestData(cls):
 cls.user = get_user_model().objects.create_user(
 username="testuser", email="test@email.com", password="secret"
)
 cls.post = Post.objects.create(
 title="A good title",
 body="Nice body content",
 author=cls.user,
)

 def test_post_model(self):
 self.assertEqual(self.post.title, "A good title")
 self.assertEqual(self.post.body, "Nice body content")
 self.assertEqual(self.post.author.username, "testuser")
 self.assertEqual(str(self.post), "A good title")
 self.assertEqual(self.post.get_absolute_url(), "/post/1/")

 def test_url_exists_at_correct_location_listview(self):
 response = self.client.get("/")
 self.assertEqual(response.status_code, 200)

 def test_url_exists_at_correct_location_detailview(self):
 response = self.client.get("/post/1/")
 self.assertEqual(response.status_code, 200)

 def test_post_listview(self):
 response = self.client.get(reverse("home"))
 self.assertEqual(response.status_code, 200)
 self.assertContains(response, "Nice body content")
 self.assertTemplateUsed(response, "home.html")

 def test_post_detailview(self):

 response = self.client.get(reverse("post_detail", kwargs={"pk": self.post.pk}))
 no_response = self.client.get("/post/100000/")
 self.assertEqual(response.status_code, 200)
 self.assertEqual(no_response.status_code, 404)
 self.assertContains(response, "A good title")
 self.assertTemplateUsed(response, "post_detail.html")

 def test_post_createview(self):
 response = self.client.post(
 reverse("post_new"),
 {
 "title": "New title",
 "body": "New text",
 "author": self.user.id,
 },
)
 self.assertEqual(response.status_code, 302)
 self.assertEqual(Post.objects.last().title, "New title")
 self.assertEqual(Post.objects.last().body, "New text")

 def test_post_updateview(self):
 response = self.client.post(
 reverse("post_edit", args="1"),
 {
 "title": "Updated title",
 "body": "Updated text",
 },
)
 self.assertEqual(response.status_code, 302)
 self.assertEqual(Post.objects.last().title, "Updated title")
 self.assertEqual(Post.objects.last().body, "Updated text")

def test_post_deleteview(self):
 response = self.client.post(reverse("post_delete", args="1"))
 self.assertEqual(response.status_code, 302)

For test_post_createview, we make a fresh response and make sure it
corresponds to the last() object on our model, checking that the page has a
302 redirect status code. The test_post_updateview function checks to
determine if the initial post made in setUpTestData may be updated. Test
_post_deleteview, the last newly added test, verifies that a 302 redirect is
issued when a post is deleted.

Even while we have some coverage for our new features, we know there is
room for improvement in terms of the number of tests we've run. Press
Control+c to terminate the local web server, then proceed with the testing.
Every single one of them ought to be okay.

We've developed a Blog app with minimal code that supports adding,
editing, and removing blog entries. CreateRead-Update-Delete (or CRUD
for short) describes these fundamental actions. While there may be other
ways to accomplish this same goal (such as using function-based views or
custom class-based views), we've shown how little code is required in
Django to do this.

CHAPTER 7- USER ACCOUNTS
We have a functional blog app with forms, but we lack a crucial component
of most web apps: user authentication.

Proper user authentication is notoriously difficult to accomplish, and several
security gotchas are along the way. Django already has a robust
authentication system98 built in, which we can modify to meet our needs.

Django's default settings include the auth app, which provides us with a
User object that consists of the following fields: username, password, email,
first name, and last name.

We'll use this User object to log in, log out, and sign up on our blog.

User Login Access
Django's LoginView offers us a ready-made login screen. There are only a
few things left to do, like updating our settings.py file and adding a URL
pattern for the auth system and a log in template.

The django project/urls.py file must be modified first. The accounts/ URL is
where you may access the login and logout pages. This modification
involves adding a single line to the text on the second-to-last line.

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path("admin/", admin.site.urls),
 path("accounts/", include("django.contrib.auth.urls")),
 path("", include("blog.urls")),
]

By default, Django looks for a log in form in a templates directory called
registration called login.html. Therefore, we must make a new folder named
"registration" and place the necessary file within it. To end our local server,

use Control+c at the command prompt. The next step is to make the new
folder.

mkdir templates/registration

Create a new template file in the new registration folder called login.html.
This is the code for the login.html file:

{% extends "base.html" %}
{% block content %}
<h2>Log In</h2>
<form method="post">{% csrf_token %}
 {{ form.as_p }}
 <button type="submit">Log In</button>
</form>
{% endblock content %}

After a successful login, we must tell the system where to send the user.
With the LOGIN REDIRECT URL setting, we can do this. Just add the
following at the end of the settings.py file in django_project:

LOGIN_REDIRECT_URL = "home"

Now the user is redirected to our homepage, 'home'. And at this moment,
our work is complete. Once you've restarted the Django server with python
manage.py runserver, you should be able to see our login page at
http://127.0.0.1:8000/accounts/login/.

After entering our superuser credentials, we were sent back to the main
page.

Remember that we didn't have to manually develop a database model or
implement any view logic because Django's authentication system already
did that for us.

Calling the User’s Name on The HomePage
It would be a good idea to make a change to our base.html template that
would show a message to all visitors, whether they are signed in or not. The
is_authenticated attribute can be used for this purpose.

It will do for now to simply make this code easy to find. We can give it a
better look later on when we have more time. Modify the base.html file by
inserting new code behind the </header> tag.

This is the updated base.html file:

{% load static %}

<html>

<head>
 <title>Django blog</title>
 <link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400"
rel="stylesheet">
 <link href="{% static 'css/base.css' %}" rel="stylesheet" s>
</head>

<body>
 <div>
 <header>
 <div class="nav-left">
 <h1>Django blog</h1>
 </div>
 <div class="nav-right">
 + New Blog Post
 </div>
 </header>
 {% if user.is_authenticated %}
 <p>Hi {{ user.username }}!</p>
 {% else %}
 <p>You are not logged in.</p>
 Log In
 {% endif %}
 {% block content %}
 {% endblock content %}
 </div>
</body>

</html>

This code will say a user’s name and display Hello if they are logged in.
Otherwise, it will be a link to our new login page.

User Log Out Access
We included logout template page logic, but how do we log out? We can do
it manually in the Admin panel, but there's a better approach. Let's add a log
out link that goes to the home page. With Django auth, this is easy.

Just below our user greeting, add a % url 'logout' % link in our base.html
file.

This is the updated script:

{% load static %}
<html>

<head>
 <title>Django blog</title>
 <link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400"
rel="stylesheet">
 <link href="{% static 'css/base.css' %}" rel="stylesheet" s>
</head>

<body>
 <div>
 <header>
 <div class="nav-left">

 <h1>Django blog</h1>
 </div>
 <div class="nav-right">
 + New Blog Post
 </div>
 </header>
 {% if user.is_authenticated %}
 <p>Hi {{ user.username }}!</p>
 <p>Log out</p>
 {% else %}
 <p>You are not logged in.</p>
 Log In
 {% endif %}
 {% block content %}
 {% endblock content %}
 </div>
</body>

</html>

Django auth app provides the essential view. We must indicate where to
send logged-out users.

Update django project/settings.py with LOGOUT REDIRECT URL. We
can add it next to our login redirect, so the file should look like this:

LOGOUT_REDIRECT_URL = "home"

You'll see a "log out" link if you refresh the homepage.

Go ahead. Click it and see where it leads.

Allow Users to Sign Up
To register new users, we need to create our own view. However, Django
supplies us with a form class called UserCreationForm to make this process
easier. By default, it has three fields: username, password1, and password2.

Code and URL structure can be organized in numerous ways for user
authentication. Stop the local server by pressing Ctrl + C, and make a new
app called "accounts" for our sign-up page.

python manage.py startapp accounts

Add the app to django_project under INSTALLED APPS in the settings.py
file.

Add a new URL path to this app in urls.py of the django project folder
below the built-in auth app.

path("accounts/", include("accounts.urls")),

Django reads this script top-to-bottom. Thus url order matters. When we
request /accounts/signup, Django first looks in auth, then accounts.

Create a urls.py file in the new accounts folder using your text editor. Fill it
with the following code:

from django.urls import path
from .views import SignUpView

urlpatterns = [
 path("signup/", SignUpView.as_view(), name="signup"),
]

Now let’s create the view. The view implements UserCreationForm and
CreateView. Go to accounts/views.py and fill in with the following code:

We subclass CreateView in SignUpView. We use signup.html's built-in
UserCreationForm and uncreated template. After successful registration,
reverse lazy redirects the user to the login page.

Why is reverse lazy used here rather than reverse? All generic class-based
views don't load URLs when the file is imported. Therefore we use
reverse's lazy form to load them afterward.

Create signup.html in the templates/registration/ folder. Add the following
code.

{% extends "base.html" %}
{% block content %}
<h2>Sign Up</h2>
<form method="post">{% csrf_token %}
 {{ form.as_p }}
 <button type="submit">Sign Up</button>
</form>
{% endblock content %}

This format is familiar. We extend our base template at the top, add our
logic between <form></form> tags, use the csrf token for security, and
provide a submit button.

Finished! To test it, run python manage.py runserver and visit
http://127.0.0.1:8000/accounts/signup.

Link to Sign Up
Add a signup link on the logged-out homepage. Our users can't know the
exact URL. We may add the URL to our template. In accounts/urls.py, we
gave it the name signup, so that's all we need to add to base.html with the
url template tag, exactly like our other links.

Add "Sign Up" underneath "Log In"

Sign Up

Looks much better!

GitHub
We haven't made a git commit in a while. Do that, then push our code to
GitHub. First, check git status for new changes.

git status

git add -A

git commit -m "forms and user accounts"

Create a new repo on GitHub. I'll call it blog. After creating a new GitHub
repo, I can input the following commands. Replace macvicquayns with
your GitHub username.

git remote add origin https://github.com/MacVicquayns/blog.git

git branch -M main

git push -u origin main

Static Files

Previously, we configured our static files by establishing a static folder,
directing STATICFILES DIRS to it, and adding % load static % to our
base.html template. We need a few extra steps because Django won't
support static files in production.

First, use Django's collectstatic command to assemble all static files into a
deployable folder. Second, set the STATIC_ROOT setting to the staticfiles
folder. Third, set STATICFILES_STORAGE, collectstatic's file storage
engine.

Here's what the revised django project/settings.py file looks like:

Now go to the command line and run python manage.py collectstatic:

A new staticfiles folder containing an admin and a css folder has been
added to your project folder. The admin is the static files from the default
admin, and the css is our own. The collectstatic command must be executed
before each new deployment in order to compile the files into the staticfiles
folder that is then utilized in production. To avoid overlooking it, this
process is commonly automated in larger projects, but that is outside the
scope of our current work.

There are a number of methods for delivering these precompiled static files
in production, but we'll be using the WhiteNoise package, which is
currently the most popular option.

To begin, install the newest version with pip:

python -m pip install whitenoise==5.3.0

Then update django project/settings.py:

Add whitenoise above staticfiles in INSTALLED APPS

Add WhiteNoiseMiddleware to MIDDLEWARE.

Swap WhiteNoise for STATICFILES STORAGE

The updated file should look like this:

After all, these, rerun python manage.py collectstatic.

There will be a small warning. This will overwrite existing files! You sure?
Enter "yes" WhiteNoise regenerates the static files in the same folder.

Static files are difficult for newbies, so here's a quick recap of our Blog
site's stages. In Chapter 5, we built a top-level static folder for local
development and changed STATICFILES DIRS. In this chapter, we added
STATIC ROOT and STATICFILES STORAGE parameters before running

collectstatic, which assembled all static files into a single staticfiles folder.
Installed whitenoise, updated INSTALLED APPS, MIDDLEWARE, and
STATICFILES STORAGE, then ran collectstatic.

Most developers, like myself, have difficulties remembering these
procedures and rely on notes.

Time for Heroku
Here we are, at the third attempt at using Heroku to launch a website. Set up
Gunicorn as your primary web server:

python -m pip install gunicorn==20.1.0

Create a requirements.txt file to store the current virtual environment's
contents with this command.

python -m pip freeze > requirements.txt

In django project/settings.py, update ALLOWED HOSTS.

ALLOWED_HOSTS = [".herokuapp.com", "localhost", "127.0.0.1"]

Also, make sure you have a manage.py file and a Procfile and runtime.txt
file in the root folder of our project.

Put this code in the Procfile:

web: gunicorn django_project.wsgi --log-file –

Put your current version of Python in the runtime.txt file and save.

Now, check the git status, and push everything to your GitHub. Run these
commands in this order:

git status

git add -A

git commit -m "Heroku config"

git push -u origin main

Deploy to Heroku
Log in to your Heroku account from the command line.

heroku login

Heroku will then create a new container where our application will reside
once the create command has been executed. If you don't specify a name
and just run heroku create, Heroku will come up with one for you at
random; however, you are free to choose your own name, provided it is
unique on Heroku. You can't use the name d12-blog because I've already
used it. You must use a different alphabetic and numeric sequence.

heroku create d12-blog

The prior apps did not have static file configurations. Thus we used heroku
config:set DISABLE COLLECTSTATIC=1 to prevent Heroku from
running the Django collectstatic command automatically. But now that we
have static files set up, we can relax and let this happen automatically
during deployment.

Adding a web process to Heroku and pushing our code there will get the
dyno up and running.

git push heroku main

heroku ps:scale web=1

Your new app's URL can be found in the terminal output or by typing
"heroku open."

PostgreSQL vs SQLite
We have been using Django's preconfigured SQLite database on our local
machines and in production so far in this book. It's far simpler to set up and
use than a server-based database. Although it's convenient, there is a price
to pay for it. Because Heroku uses a transient file system, any modifications
made to the cloud-based db.sqlite3 file are lost anytime a new deployment
or server restart takes place. On the free tier that we are now using, the
servers may be rebooted as frequently as once every 24 hours.

This ensures that any changes made to the database in a development
environment may be replicated in a production environment with a simple
push. However, new blog posts or changes you make to the live website
won't last forever.

Thanks to some spare code, our Blog site now has sign up, log in, and log
out capabilities.

Several potential security issues can arise when developing a custom user
authentication method, but Django has already dealt with them. We
deployed our site to Heroku with the static files set up correctly for
production. Well done!

CONCLUSION
The completion of this fantastic Django course is a cause for celebration.
We began with nothing and have already completed five separate web apps
from scratch using all of the primary capabilities of Django, including
templates, views, urls, users, models, security, testing, and deployment. You
should now feel confident creating your own cutting-edge websites with
Django.

Putting what you've learned into practice is essential if you want to become
proficient at it. Our Blog and Newspaper sites share a feature known as
CRUD (Create-Read-Update-Delete) with a wide variety of other web apps.
Can you, for instance, develop a web-based to-do list? Will you create an
app similar to Twitter or Facebook? You don't need anything else because
you already have it all. The ideal way to learn the ropes is to construct
many simple projects and gradually increase their complexity as you gain
experience and knowledge.

Follow-Up Actions
There is a lot more to learn about Django than what we covered in this
book. This is crucial if you plan on creating massive websites with
hundreds of thousands or even millions of monthly visitors. There's no need
to look further than Django itself for this. Django for Professionals is a
follow-up book I wrote that covers topics like using Docker, installing a
production database locally like PostgreSQL, registering advanced users,
securing the site, optimizing performance, and much more.

When building mobile apps (iOS/Android) or websites with a dedicated
JavaScript front-end framework like Vue, React, or Angular, Django is
often utilized as the back-end API. Django REST Framework181, a third-
party program that is tightly integrated with Django itself, makes it possible
to convert any preexisting Django website into an API with no additional
coding. If you're interested in reading more, I've devoted a complete book
to the subject, entitled Django for APIs.

Third-party bundles

As we’ve seen in this book, 3rd party packages are an essential element of
the Django ecosystem, especially regarding deployment or enhancements
surrounding user registration. It’s not uncommon for a professional Django
website to rely on dozens of such packages.

Caution: don't install 3rd party packages only to save a little time now. Any
additional packages increase the chances that their maintainer won't fix all
bugs or upgrade to the newest version of Django. Learn its uses.

Django Packages is a complete database of all available third-party apps if
you're interested in viewing additional packages.

	Introduction
	What Is a Web Framework?
	Meet Django
	What is Django Used For?

	Chapter 1 - Installing to Get Started
	Introducing the Command Line
	Shell Commands
	Virtual Environments

	Installing Django
	Setup your Virtual Environment for Django on MacOs/Linux
	Installing Pipenv Globally

	Your First Blank Django Project
	Introducing Text Editors
	Setting Up Django on VS Code

	Lastly, Git

	Chapter 2 - Create Your First Django Project
	Setup
	HTTP Request/Response Cycle
	Model-View-Controller (MVC) and Model-View-Template (MVT)
	Creating A Blank App
	Designing Pages
	Using Git

	Chapter 3 - Django App With Pages
	Setup
	Adding Templates
	Class and Views
	Our URLs
	About Page
	Extending Templates
	Testing
	Website Production
	Heroku
	Let’s Deploy

	Chapter 4 - Create Your First Database-Driven App And Use The Django Admin
	Initial Setup
	Let’s Create a Database Model
	Activate the models
	Django Admin
	Views/Templates/URLs
	Let’s Add New Posts
	Tests
	Storing to GitHub
	Setup Heroku
	Deploy to Heroku

	Chapter 5 – Blog App
	Initial Set Up
	Database Models
	Admin Access
	URLs
	Views
	Templates
	Add some Style!
	Individual Blog Pages
	Testing
	Git

	Chapter 6 – Django Web Forms
	CreateView
	Let Anyone Edit The Blog
	Let Users Delete Posts
	Testing Program

	Chapter 7- User Accounts
	User Login Access
	Calling the User’s Name in The HomePage
	User Log Out Access
	Allow Users to Sign Up
	Link to Sign Up

	GitHub
	Static Files
	Time for Heroku
	Deploy to Heroku
	PostgreSQL vs SQLite

	Conclusion
	Follow-Up Actions
	Third-party bundles

